Conditional Ablation of Ezh2 in Murine Hearts Reveals Its Essential Roles in Endocardial Cushion Formation, Cardiomyocyte Proliferation and Survival
نویسندگان
چکیده
Ezh2 is a histone trimethyltransferase that silences genes mainly via catalyzing trimethylation of histone 3 lysine 27 (H3K27Me3). The role of Ezh2 as a regulator of gene silencing and cell proliferation in cancer development has been extensively investigated; however, its function in heart development during embryonic cardiogenesis has not been well studied. In the present study, we used a genetically modified mouse system in which Ezh2 was specifically ablated in the mouse heart. We identified a wide spectrum of cardiovascular malformations in the Ezh2 mutant mice, which collectively led to perinatal death. In the Ezh2 mutant heart, the endocardial cushions (ECs) were hypoplastic and the endothelial-to-mesenchymal transition (EMT) process was impaired. The hearts of Ezh2 mutant mice also exhibited decreased cardiomyocyte proliferation and increased apoptosis. We further identified that the Hey2 gene, which is important for cardiomyocyte proliferation and cardiac morphogenesis, is a downstream target of Ezh2. The regulation of Hey2 expression by Ezh2 may be independent of Notch signaling activity. Our work defines an indispensible role of the chromatin remodeling factor Ezh2 in normal cardiovascular development.
منابع مشابه
Tbx20 acts upstream of Wnt signaling to regulate endocardial cushion formation and valve remodeling during mouse cardiogenesis.
Cardiac valves are essential to direct forward blood flow through the cardiac chambers efficiently. Congenital valvular defects are prevalent among newborns and can cause an immediate threat to survival as well as long-term morbidity. Valve leaflet formation is a rigorously programmed process consisting of endocardial epithelial-mesenchymal transformation (EMT), mesenchymal cell proliferation, ...
متن کاملEctopic Noggin in a Population of Nfatc1 Lineage Endocardial Progenitors Induces Embryonic Lethality
The initial heart is composed of a myocardial tube lined by endocardial cells. The TGFβ superfamily is known to play an important role, as BMPs from the myocardium signal to the overlying endocardium to create an environment for EMT. Subsequently, BMP and TGFβ signaling pathways synergize to form primitive valves and regulate myocardial growth. In this study, we investigated the requirement of ...
متن کاملHand factor ablation causes defective left ventricular chamber development and compromised adult cardiac function
Coordinated cardiomyocyte growth, differentiation, and morphogenesis are essential for heart formation. We demonstrate that the bHLH transcription factors Hand1 and Hand2 play critical regulatory roles for left ventricle (LV) cardiomyocyte proliferation and morphogenesis. Using an LV-specific Cre allele (Hand1LV-Cre), we ablate Hand1-lineage cardiomyocytes, revealing that DTA-mediated cardiomyo...
متن کاملFetal Mammalian Heart Generates a Robust Compensatory Response to Cell Loss.
BACKGROUND Heart development is tightly regulated by signaling events acting on a defined number of progenitor and differentiated cardiac cells. Although loss of function of these signaling pathways leads to congenital malformation, the consequences of cardiac progenitor cell or embryonic cardiomyocyte loss are less clear. In this study, we tested the hypothesis that embryonic mouse hearts exhi...
متن کاملMitochondrial fusion is essential for organelle function and cardiac homeostasis.
RATIONALE Mitochondria constitute 30% of myocardial mass. Mitochondrial fusion and fission appear essential for health of most tissues. Mitochondrial fission occurs in neonatal cardiomycyte and is implicated in cardiomyocyte death. Mitochondrial fusion has not been observed in postmitotic myocytes of adult hearts, and its occurrence and function in this context are controversial. OBJECTIVE De...
متن کامل